A Hom-algebra structure is a multiplication on a vector space where the structure is twisted by a homomorphism. The structure of Hom-Lie algebra was introduced by Hartwig, Larsson and Silvestrov in [4] and extended by Larsson and Silvestrov to quasi-hom Lie and quasi-Lie algebras in [5, 6]. In this paper we introduce and study Hom-associative, Hom-Leibniz, and Hom-Lie admissible algebraic structures which generalize the well known associative, Leibniz and Lie admissible algebras. Also, we characterize the flexible Hom-algebras in this case. We also explain some connections between Hom-Lie algebras and Santilli’s isotopies of associative and Lie algebras.